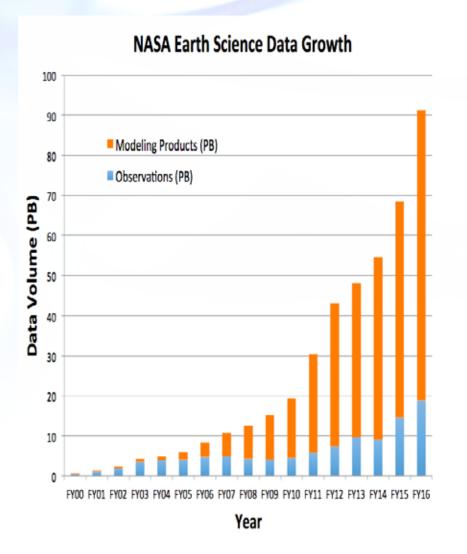


ESGF & NASA's Modeling Projects


Tsengdar Lee
Presented at the 2016 ESGF F2F Meeting

December 6, 2016

Current NASA Earth Science Data Holding

- Observations include all products archived at EOSDIS (http://earthdata.nasa.gov/).
- Modeling products include all the high resolution climate modeling and data assimilation products at NASA Center for Climate Simulations (http://www.nccs.nasa.gov/) and NASA High-End Computing Capabilities (http://www.nas.nasa.gov/hecc/).
- Significant growth in modeling data is triggered by the availability of high resolution Earth observations and the computational resources.

2016 NASA Modeling Analysis &

Simulation Product Plan

Forward	Processing
System	

3D-Hybrid Ensemble-Var (25km)

32 ensemble members Hydrostatic 1-Moment Cloud Microphysics

Current GEOS-5 FP system

3D-Hybrid Ensemble-Var (12km)

32 ensemble members Atmosphere, ocean surface Hydrostatic 2-Moment Cloud Microphysics

> Parallel FP stream in 1Q-2016

4D Ensemble-Var (9km)

~100 ensemble members Atmosphere, ocean surface Non-Hydrostatic 2-Moment Cloud Microphysics (The first GEOS-6 system)

> Parallel FP stream in 4Q-2016

Satellite-Era Reanalysis 1979 - Present

MERRA (50km) Ending Feb. 2016 3D-Var ~200 TB

MERRA-2 (50km)

3D-Var
Aerosols and CO, SO₂, O₃
1-Moment Cloud
Microphysics
~400 TB

MERRA-2 GMI replay (50km)

Replay
GMI Chemistry
1 streams, 1,000 cores each
12 to 18 months
~ 1 PB

Coupled Reanalysis ("MERRA-3")

Atmosphere-land-oceancryosohere (alignment with SFS and CMIP6)

FY2019 target

EOS-Era Reanalysis 2000 – Present

M2R12K (12km)

MERRA2 downscaled to 12 km Aerosols CO₂, CO, SO₂, O₃ Non-Hydrostatic 1-Moment Cloud Microphysics

IESA (12km)

3D-Hybrid Ensemble-Var
32 ensemble members
atmosphere, land, ocean surface
Aerosols, CO₂, CO, SO₂, O₃
Non-Hydrostatic
2-Moment Cloud Microphysics
5,000 cores; 40 simulation days/day
150 days total wallclock
~3 to 4 PB of data

IESAR4K (4km)

IESA Downscaled to 4km downscaling evaluation for NCA Aerosols, CO₂, CO, SO₂, O₃ Non-Hydrostatic 2-Moment Cloud Microphysics 5,000 cores; 40 simulation days/day 150 days total wallclock

~3 to 4 PB of data

Nature Runs (OSSEs)

G5NR (7km)
Simulated 2005-2007
Aerosols, CO₂, CO, SO₂, O₃
Non-Hydrostatic
1-Moment Cloud
Microphysics
4 PB

G5NR-CHEM (12km)

Simulated 2013-2014
Replay to M2R12K
Full Reactive Chemistry
Non-Hydrostatic
1-Moment Cloud
Microphysics
1 PB of data

4Q-FY2016

Seasonal Forecast System

GEOS SFS (50km) MERRA-2 replay 50km, 40L ocean analysis 31 members per month Include aerosols, CO, CO₂ M2-driven EnOl ocean analysis

GEOS SFS (25km)

Alignment with "MERRA-3" 25km, 50L ocean analysis System design under review

FY2019 target

Coupled Simulations (Decadal, CMIP6)

GEOS CMIP (25km)

25km Atmosphere 25km 50L ocean Include aerosols greenhouse gases Hydrostatic 2-Moment Cloud Microphysics

Planning/discussion and system evaluation in progress

Will align with "MERRA-3" SFS and strategic direction o ESD

G6NR (3km)

Simulated 2015
Aerosols
CO₂, CO, SO₂, O₃, CH₄
Non-Hydrostatic
2-Moment Cloud
Microphysics
~4 PB
Planning/evaluation

Core GMAO projects completed, in-progress

Pathfinding projects toward GMAO core efforts.

FY16 Projects

Projects undergoing GMAO discussion/evaluation

Pla

Planned Future Projects

High Resolution Climate Projections

Climate Downscaling

DCP30 (Downscaled Climate Projections at

30arc sec)

Domain/Resolution: CONUS, ~800m

Frequency: Monthly

Variables: Tmax, Tmin, and Precip

No of CMIP5 models: 34

Baseline Data: Daly et al., 2002

Funding: NASA

BCCA (Bias Corrected Constructed Analogs)

Domain/Resolution: CONUS, ~12km

Frequency: Monthly

Variables: Tmax, Tmin, Precip

No of CMIP5 models: 21

Baseline Data: Maurer et al. 2002

Funding: USBR

LOCA (Localized constructed analogs)
Domain/Resolution: CONUS, ~6km

Frequency: Daily

Variables: Tmax, Tmin, Precip;

Humidity, Windspeed (in progress)

No of CMIP5 models: 32

Baseline Data: Livneh et al. 2013

Funding: USBR/CalEnergy

GDDP (Global Daily Downscaled Climate

Projections)

Domain/Resolution: Global, ~25km

Frequency: Daily

Variables: Tmax, Tmin, and Precip

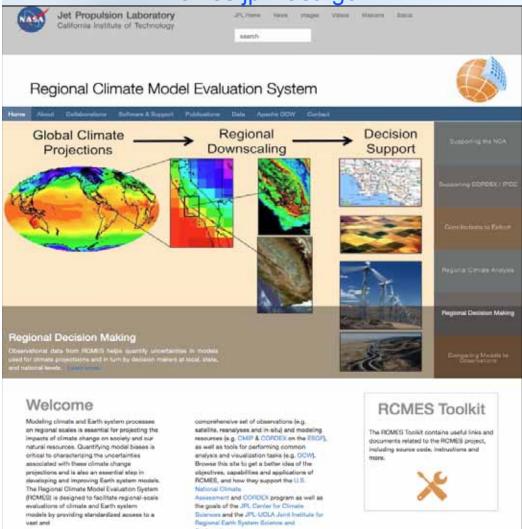
No of CMIP5 models: 21

Baseline Data: Sheffield et al. 2006

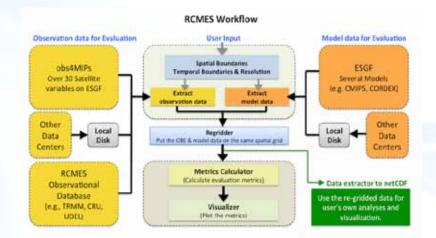
Funding: NASA

Gearing up for Climate Modeling Data Analytics

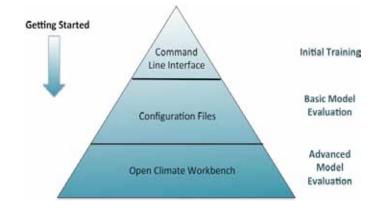
- Traditional data center focuses on data archive, access and distribution
 - Scientists typically order and download specific data sets to a local machine to perform analysis
 - With large amount of observational and modeling data, downloading to local machine is becoming inefficient
 - Data centers are starting to provide additional services for data analysis
- NASA computing and computational science program is building "data analytics platforms" using "Climate Analytics as a Service" (CAaaS) such as NASA Earth Exchange (NEX), Regional Climate Modeling Evaluation Systm (RCMES), Climate Model Diagnostic Analyzer (CMDA) and Observation for Model Intercomparison Project (Obs4MIPs) using Earth System Grid Federation (ESGF)
 - Build on technologies
 - Enabled by a rule based data management system
 - Current research focuses on how to manage data movement from the archives to the analytical platforms



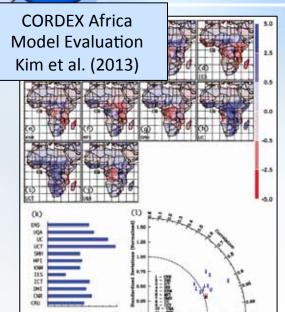
Regional Climate Model Evaluation System

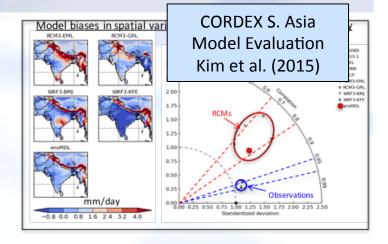


RCMES facilitates regional model evaluation efforts via open source analysis toolkit and efficient links to model output (e.g. CORDEX, CMIP) and global observations (e.g. obs4MIPs, ana4MIPs).

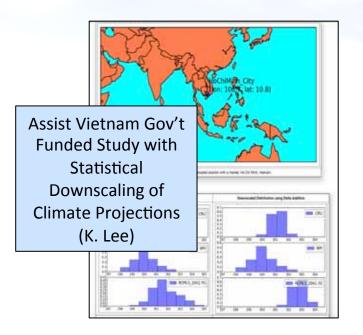

rcmes.jpl.nasa.gov

Modular and Open Source Design

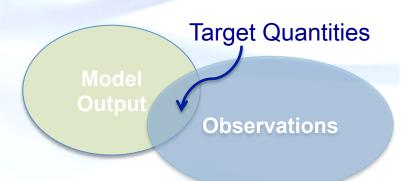

Graduated & Documented Training Materials

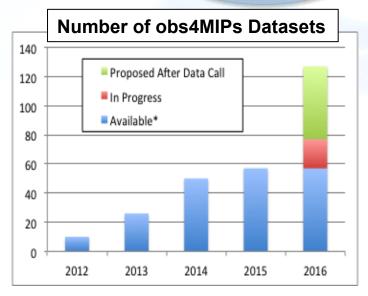

Regional Climate Model Evaluation System

Contributing tools, resources and training to CORDEX



CORDEX-2016 Conference Stockholm, Sweden RCMES Training; ~50 attendees



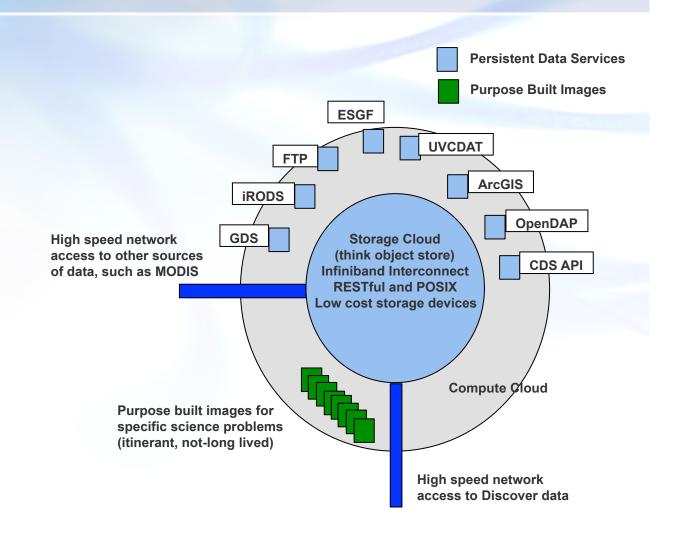


obs4MIPs

https://www.earthsystemcog.org/projects/obs4mips/

- Obs4MIPs Obs4MIPs
- A Project for identifying, documenting and disseminating observations for climate model evaluation.
- Data sets accessible on the Earth
 System Grid Federation (ESGF)
 alongside the Coupled Model
 Intercomparison Projection (CMIP)
 model output, adhering to the same data
 conventions, greatly facilitating research
- Guided by the World Climate Research Program (WCRP) Data Advisory Council (WDAC) obs4MIPS Task Team
- Growing international partnerships.

*ESGF is partially down until March



Science Cloud Architecture

- Agile, high level of support
- Storage is 90% full prior to use
- The system owns the data
- The users own their analysis
- Extensible storage; build and expand as needed
- Persistent data services built in VMs, Containers, or bare metal
- Create purpose build VMs for specific science projects
- Image management

Climate Model Diagnostic Analyzer

- Web-based tools running on Amazon cloud.
- Only requirement from a user machine is a web browser with an internet connection. No local installation needed.
- Provides datasets and analysis services.
- You can analyze the datasets using the services.
- You can download analyzed output datasets.
- You can download original input datasets.

Major Challenges Over Next 10 Years and What Can We Do Now

- Challenge: Modeling and observational data will continue to grow exponentially
 - Major challenge in data management, analysis, and collaboration
 - Tape archives will not meet big data analysis challenges
 - Network will not catch up
 - Library model will no longer work
- Actions now:
 - Build centralized data analytics systems
 - Data proximal analytic capabilities (move the analytics to the data)
 - Commoditize data storage and data analytics
 - Explore and adopt new storage technologies (e.g., object storage)
- Large scale science informatics system will be needed to solve the future data challenges